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A B S T R A C T   

The boiling performance, represented by the heat transfer coefficient (HTC) and critical heat flux (CHF), must be 
enhanced because the energy demand of industrial processes that generate a lot of heat increases under extreme 
conditions. Surface manipulations have been used to improve boiling performance by controlling interfacial 
characteristics. Specifically, biphilic or superbiphilic patterned surfaces have been widely utilized to enhance 
HTC and CHF. However, it remains a challenging issue to improve CHF on superbiphilic surfaces with wicking 
phenomena due to the suppression of liquid supply in hydrophobic regions. In the present work, to investigate 
the mechanism and experimentally break through the limits of CHF enhancement, artificially patterned super-
biphilic (SBPI) surfaces with different superhydrophobic (SHPO) area fractions were produced, and conducted 
pool boiling heat transfer. By artificially promoting nucleation, all SBPI surfaces demonstrated a higher HTC than 
homogeneous wettability surfaces. Considering dynamic wicking and bubble behaviors, the SBPI successfully 
broke through the CHF of homogeneous superhydrophilic surfaces. It is concluded that the non-dimensional 
liquid supply factor, which reflects both wicking and bubble behaviors, is essential to design structured sur-
faces during boiling. The results can contribute to a strategy for further improving boiling performance by 
controlling wettability on nanoscale interfaces.   

1. Introduction 

High-heat-generating energy systems must implement efficient 
thermal management to guarantee their performance and safety. Boiling 
heat transfer is one of the intensive cooling mechanisms for heat dissi-
pation, removing thermal energy through phase change phenomena of 
working fluid with a stable surface temperature of a device [1–4]. 
Consequently, it has been utilized for thermally sensitive systems with 
high thermal loads, such as power generating systems, and immersion 
cooling of integrated electronic devices [5–7]. Many studies have been 
widely conducted to improve boiling performance because various in-
dustrial fields require extremely high-efficiency heat transfer [8–14]. 
Increasing heat transfer efficiency and ensuring thermal stability under 
extreme conditions are the two primary approaches to enhancing boiling 
performance. The heat transfer coefficient (HTC), the ratio of input heat 
flux to wall superheat, was proposed to evaluate heat transfer efficiency. 

The critical heat flux (CHF) is another major factor in determining 
boiling performance. CHF is the limiting point of fully developed 
nucleate boiling before forming a vapor film. When the thermal load 
reaches the CHF, a vapor film blocks the coolant supply to the heated 
surface; the low thermal conductivity of the vapor layer may cause 
thermal damage. Hence, simultaneous enhancement of the HTC and 
CHF should be achieved for effective thermal management and safety of 
the system. 

Surface manipulation is an effective method to improve boiling 
performance via manipulating interfacial characteristics and consequent 
nucleation behaviors [15,16]. Surface wettability is the representative 
interfacial property of engineered surfaces closely related to CHF. 
Particularly, hydrophilicity improves the supply of working fluid to the 
boiling surface and delays the formation of vapor film to increase the 
CHF. In addition, the wicking coefficient, the rate of liquid propagation 
between structured surfaces with capillary effects, was used to evaluate 
the dynamic wetting characteristics. High-wicking ability has further 
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enhanced CHF through additional heat dissipation by immediately 
supplying liquid to the local dry areas. Recently, various manipulated 
surfaces accompanied by wicking have been applied for enhanced 
boiling, and new CHF enhancement models have been proposed. Ahn 
et al. [17] provided liquid spreading models to explain CHF enhance-
ment on nanostructured surfaces. The volume of liquid spread was 
evaluated by the volume difference between the initial and remained 
droplet. Kim et al. [18] used aligned nanopillars with different diameters 
to analyze the mechanism of CHF enhancement. Wicking distance could 
be measured using high-speed wicking propagation images, and the 
wicking coefficient was calculated by the ratio of wicking distance to the 
square root of time. Rahman et al. [19] described that additional heat 
dissipation by wicked liquid based on calculated wicked volume flux. 
Song et al. [20] investigated the wicking speed of various sandblasted 
surfaces, and described CHF enhancement using a unified descriptor 
considering both surface roughness and wicking speed. In early research 
to predict CHF, the correlations were provided considering the hydro-
dynamic instability [21–23], wettability [24], and roughness [25,26]. In 
the case of the surface with wicking phenomena, generally, the CHF can 
be described as the sum of the conventionally derived hydraulic model 
and the additional heat dissipation capacity provided by wicking. 

Bubble departure characteristics, closely related to the HTC, are also 
important factors in boiling performance [27]. Early onset of nucleate 
boiling (ONB) facilitates developing two-phase heat transfer to a broad 
area with enhanced micro scale convection, evaporation, and quenching 
mechanisms during boiling. Hence, research on surface manipulations 
was conducted to promote the ONB and control nucleate site density on 
various engineered surfaces such as nanowires [28], channels [29], 
micro-cavity [30], reentrant structures [31], and micro-nano hybrid 
structures [32,33]. The bubble behaviors also had a significant effect on 
the CHF because it was directly involved in vapor film formation. 
Several studies have achieved CHF improvement by effectively sepa-
rating liquid-vapor pathway using porous structures [34,35], honey-
comb plate [36], 3d-printed composite porous structure [37], 3d-printed 
polymer structures [38]. 

Recently, novel methods to obtain the early onset of nucleation and 
separating liquid-vapor pathway have been implemented using the 
biphilic surface (i.e., heterogenous wettability surface). The objective of 
biphilic surface was to accomplish the synergetic effect of the hetero-
geneous wettability surfaces to promote nucleation activation on the 
hydrophobic and ensure the liquid supply on the hydrophilic regions, 

respectively. Betz et al., [39] applied biphilic surfaces to improve boiling 
heat transfer, and successfully demonstrated that CHF and HTC could be 
enhanced using hydrophilic networks with hydrophobic islands. Jo 
et al., [40,41] demonstrated meaningful results that boiling heat transfer 
improvement on biphilic patterned surfaces by analyzing bubble mo-
tions. Shen et al. [42] explained the early ONB and enhanced HTC on 
biphilic surfaces by experiments and simulations of bubble behaviors. 
Hsu et al. [43] conducted flow boiling utilizing different shapes and 
parameters of biphilic patterns. Zhang et al. [44] fabricated the 3D 
heterogeneous wetting microchannels and evaluated the boiling per-
formance. Ateş et al. [45] investigated the boiling performance on 
superbiphilic surfaces at atmospheric and sub-atmospheric pressures. 
Recently, efforts to maximize boiling performance have been actively 
reported using optimum parametric design or nanoscale textured 
superbiphilic characteristics [46–49]. The boiling experiments using the 
biphilic surfaces demonstrated that the HTC is enhanced by the early 
ONB, the starting point of the boiling mechanism; hydrophobic patterns 
regulate nucleate sites and increase the density of activated nucleation 
for enhanced HTC. Moreover, the bubble departure diameter has 
changed due to a strong pinning effect at the 
hydrophilicity-hydrophobicity boundaries [50,51]. Compared to bare 
surfaces or homogeneous wettability surfaces, controlled nucleate sites 
on biphilic surfaces have increased the CHF by separating the liquid 
supply and vapor departure regions. Several studies have applied 
superbiphilic (SBPI) surfaces, which employ nanostructured surfaces 
accompanied by wicking phenomena, to improve boiling performance 
[52,53]. Table A.1 in Appendix A of supporting information (SI) briefly 
summarizes the materials and boiling heat transfer results in previous 
works. Remarkably, the HTC has increased significantly on the SBPI 
surfaces due to superhydrophobicity which has stimulated bubble 
nucleation and maximized nucleate density. However, the CHF did not 
exhibit the expected improvement; rather, it decreased compared to the 
homogeneous superhydrophilic (SHPI) surface. The superhydrophobic 
(SHPO) dots significantly impact the deterioration of liquid propagation 
capabilities on wicking surfaces. Therefore, due to the wicking area 
reduction effects, the CHF decreases as the hydrophobic area fraction 
increases. Therefore, it remained a challenging task to improve CHF as 
well as maximize HTC on superbiphilic surfaces with wicking. 

This study proposes strategically controlled SBPI patterns on wicking 
surfaces to improve HTC and CHF simultaneously during pool boiling 
heat transfer. The 5 μm-high silicon nanowires (SiNWs) were fabricated 

Nomenclature 

Symbols 
Ab cross-sectional area of single bubble (mm2) 
Awick wicking area (mm2) 
Atotal total area (mm2) 
d diameter of superhydrophobic dots (mm) 
Db bubble departure diameter (mm) 
h height of nanowires (μm) 
hlv latent heat of liquid-vapor phase (J/g) 
p pitch of superhydrophobic dots (mm) 
Pb perimeter of single bubble (mm) 
q′′

add, wick additional heat dissipation caused by the evaporation of 
wicked liquid (W/cm2) 

q′′
CHF, plain critical heat flux on silicon plain (W/cm2) 

r surface roughness factor 
W wicking rate (mm/s0.5) 
Weff,V effective volumetric wicking rate (mm3/s) 

Greek symbols 
θ Young’s contact angle (̊) 

θ* apparent contact angle (̊) 
θc critical contact angle (̊) 
λc critical wavelength (mm) 
ρl density of liquid (g/mm3) 
φ solid fraction 

Abbreviation 
CHF critical heat flux 
FE-SEM field emission scanning electron microscope 
FOTS fluoro-octyltrichloro silane 
H-SHPI homogeneous superhydrophilic 
H-SHPO homogeneous superhydrophobic 
HTC heat transfer coefficient 
MACE metal-assisted chemical etching 
ONB onset of nucleate boiling 
SBPI superbiphilic 
SEM scanning electron microscope 
SHPI superhydrophilic 
SHPO superhydrophobic 
SiNWs silicon nanowires  
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to obtain the SHPI base surface, which has wicking phenomena. As the 
primary design parameter, the SHPO area fraction is controlled by three 
different diameters of low surface energy-coated dots. Fig. 1 depicts the 
anticipated boiling performance enhancement mechanism. The super-
hydrophobicity will aid in nucleation from low heat flux. Active bubble 
departure behavior with a high nucleation site density contributes to 
efficient heat dissipation. High heat flux dissipation requires the main-
tenance of superhydrophilicity and wicking properties to supply coolant 
effectively. We demonstrate through experimental evaluations that a 
SBPI surface with less than 1% -SHPO area fraction is adequate for 
retaining a high liquid supply via minimal liquid propagation obstruc-
tion. Pool boiling experiments and visualization of bubble departure 
characteristics were conducted to validate the SBPI surfaces’ strategy for 
enhancing boiling performance. 

2. Materials and methods 

This section demonstrates the specimen preparations and details of 
the experimental equipment. First of all, the wettability-controlled 
surface or SBPI surfaces fabrication processes based on the theoretical 
approaches are provided. Also, the parametric design of nanowire arrays 
and SHPO dot islands are described. The methods to evaluate interfacial 

properties are explained by containing wettability, morphology, and 
bubble dynamics during boiling. Finally, the pool boiling experimental 
setup and data reduction process with uncertainties are discussed. 

2.1. Fabrication of homogeneous super-wettabilty surface and SBPI 
patterns 

Superhydrophilicity was achieved by fabricating SiNWs with high 
surface roughness. Superhydrophobicity was obtained by additional low 
surface free energy coating on SiNWs using fluoro-octyltrichloro silane 
(FOTS). Metal-assisted chemical etching (MACE) was performed to 
fabricate SiNWs [54]. Detailed fabrication processes of homogeneous 
wettability surfaces and SBPI surfaces are explained in SI. Due to the 
increased surface roughness and high surface free energy of intrinsic 
silicon, SiNWs exhibit SHPI properties. The apparent contact angle of 
rough surfaces can be described by Wenzel’s model in hydrophilic sur-
faces as follows [55,56]: 

cosθ∗ = rcosθ (1)  

where θ* corresponds to the apparent contact angle, r denotes the sur-
face roughness factor, and θ is Young’s contact angle on the ideal plain 
surface. In Wenzel’s model, the working fluid rapidly permeates and 
propagates between the structures. The hydrophilicity is strengthened 
by increasing the surface roughness; after that, the superhydrophilicity 
can be achieved by a high aspect ratio of SiNWs. Conversely, the 
working fluid does not penetrate between surface structures on the hy-
drophobic surfaces in Cassie-Baxter’s model [56,57]. 

cosθ∗ = − 1 + φ(cosθ+ 1) (2)  

where φ denotes the solid fraction, which is the ratio of solid contact 
area to the total area. Superhydrophobicity could be achieved by low 
surface energy coating and decreasing the solid fraction via nano-
structures [56,58,59]. In the present work, FOTS was coated on the 
silicon surface to reduce surface energy for hydrophobicity. 

Six surfaces having different wettability characteristics and SHPO 
patterned diameters were applied in pool boiling experiments. The 
boiling surfaces were separated into two major sections: surfaces with 
homogeneous wettability and SBPI. The former consisted of silicon (Si 
plain), SiNWs representing the homogeneous SHPI (H-SHPI) surface, 
and FOTS-coated SiNWs representing the homogeneous SHPO (H- 
SHPO) surface. The SBPI surfaces have circular FOTS patterned with 
various diameters ranging from 0.1 mm to 1.0 mm on SiNWs. On the 
SBPI surfaces, the diameter of patterns was controlled by photolithog-
raphy using a positive photoresist (PR). Details of the fabrication process 
to obtain the SBPI surface are described in SI. 

The surface characteristics, which include the contact angle, patterns 
dimensions, and SHPO area fraction (ASHPO/Atotal) are listed in Table 1. 
Remarkably, ASHPO/Atotal was only 0.26% on SBPI surface with a 
diameter of 0.1 mm (SBPI_d0.1). The SBPI_d0.1 could maintain the 

Fig. 1. Strategy for enhanced heat transfer coefficient (HTC) and critical heat 
flux (CHF) simultaneously using SBPI surface. Hydrophobic coating promotes 
bubble nucleation to improve HTC, and wicking phenomena on nanowires 
enhance CHF. The SBPI surface utilizes the synergetic effect of super-
hydrophobicity and superhydrophilicity to enhance boiling performance. 

Table 1 
Geometric variables and consequent wetting characteristics on homogeneous wettability surfaces and SBPI surfaces.   

Homogeneous wettability surface Superbiphilic (SBPI) surface 
Abbreviation Base 

case 
Homogeneous 
Superhydrophillic (H-SHPI) 

Homogeneous 
Superhydrophobic (H-SHPO) 

SBPI_d0.1 SBPI_d0.5 SBPI_1.0 

Materials Si plain SiNWs SiNWs+FOTS SiNWs+Patterned 
FOTS 

SiNWs+Patterned 
FOTS 

SiNWs+Patterned 
FOTS 

Height of SiNWs (h) 
(μm) 

– 5 5 5 5 5 

Number of patterns – – – 49 (7 × 7) 49 (7 × 7) 49 (7 × 7) 
Pattern pitch (p) 

(mm)    
1.75 1.75 1.75 

Pattern diameter 
(d) (mm)    

0.1 0.5 1.0 

Contact angle (◦) 46 7 169 7, 169 7, 169 7, 169 
ASHPO/Atotal (%) 0 0 100 0.26 6.41 25.65  
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superhydrophilicity and wicking property as much as possible compared 
to other SBPI cases by reducing the SHPO area. Fig. 2 shows the fabri-
cation results of SBPI surface. Fig. 2(a) indicates the design parameters 
of SHPO patterns on SHPI surface to achieve SBPI surface. The contact 
angle of SHPO and SHPI regions are shown in Fig. 2(b). Fig. 2(c) is the 
immersed image of SBPI_d0.5 before heating. Especially, primary vapor 
dots were observed on the SHPO dots of SBPI surfaces. 

2.2. Analysis on interfacial characteristics (morphology and wettability) 

The surface morphology of SiNWs and FOTS coated SiNWs was 
analyzed using a field emission scanning electron microscope (FE-SEM, 
JEOL 7800F). Cross-sectional images were used to determine the height 
and pitch. The height of nanowires was fixed at 5 μm. According to our 
previous research, 5 μm-SiNWs are sufficient to provide surface rough-
ness for superhydrophilicity accompanied by dynamic wicking phe-
nomena [56,60]. In particular, the wicking coefficient of 5 μm -SiNWs 
has been measured to 0.4 mm/s0.5 [61]. The static contact angles were 
investigated by a static sessile droplet method [56,62] using a contact 
angle goniometer (KSV, CAM-200). After dropping 2.5 µl of deionized 
(DI) water on each surface, the cross-sectional images were captured at 
500 fps using a high-speed camera. The contact angle should be 
measured in three-phase equilibrium; however, on the SiNWs, the 

droplet was absorbed and propagated by wicking phenomena between 
the structures. As a result, the contact angle of SiNWs appears close to 
zero. Consequently, the angles were provided immediately after the 
droplet contacted the SiNWs. (Δt=0.01 s). As the superhydrophilicity 
and superhydrophobicity are not clearly defined, in the present work, it 
is expressed as superhydrophilic when the contact angle is lower than 
10◦, and superhydrophobic when the contact angle is larger than 150◦

[56,63,64]. 
During pool boiling experiments, bubble departure behaviors are 

dependent on surface conditions. The average bubble departure di-
ameters were measured in present works. To analyze bubble charac-
teristics, horizontal and 10◦ tilted images were recorded using a high 
speed camera (Speedsense M310, Dantec.). The qualitative in-
vestigations of nucleate sites and bubble coalescence phenomena on 
heated surfaces were evaluated by tilted images. The quantitative values 
of bubble departure diameter could be calculated using horizontal 
shadowgraph images with 100 W LED light source. The bubbles were 
assumed perfect circles, and a commercial program (Dynamic studio 
5.1) calculated the bubble departure diameter (Db) using the below 
equation [32]. 

Db = 1.55⋅
A0.625

b

P0.25
b

(3) 

Fig. 2. SBPI surfaces fabricated by SiNWs and FOTS coating. (a) SEM image of SiNWs, and SHPO dot parameters on SBPI surfaces (scale bar only indicates for SEM 
image), (b) contact angle of SHPI regions and SHPO dot regions, and (c) immersed images of SBPI_d0.5 in the DI water pool are demonstrated. 

Fig. 3. Pool boiling experiment equipment; (a) Experimental setup for pool boiling experiment and (b) a schematic of thermally attached boiling surface module on 
the copper block heating module. 
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where Ab and Pb represent the cross-sectional area and perimeter of 
single bubble, respectively. Also, in order to increase the precision of the 
diameter, the average value was calculated using three data points at 
two different nucleation sites on each boiling surface. 

2.3. Pool boiling experiment 

The pool boiling experiment was conducted using a copper block 
heater, as described in Fig. 3. The apparatus consisted of three main 
parts: the fluid chamber, copper block heating module, and boiling 
surface specimen. The fluid chamber was made of stainless steel with 
200 × 200 × 200 mm3. Each side wall contained transparent windows 
for observing the characteristics of bubble behavior. The deionized (DI) 
water was used as a working fluid. Four vertically-spaced immersion 
heaters were installed in the chamber’s corner to maintain the satura-
tion temperature of the working fluid via PID control. Two K-type 
thermocouples were used to measure the working fluid temperature 
during the pool boiling experiment. 

The copper block heating module, which has a heated area of 10 ×
10 mm2, transfers heat flux to boiling surface specimens. A 

programmable power supply (SGI 200 × 25, AMETEK) supplied current 
to four cartridge heaters (150 V DC with 120 W of power) inserted in the 
copper block. To evaluate the 1-dimensional temperature gradient 
during boiling experiments, four K-type thermocouples were inserted at 
7 mm intervals in the middle of a copper block neck. To minimize the 
lateral heat loss for securing 1-dimensional conduction approximation, 
copper block was thermal insulated by glass fiber except for upward 
direction which contacts the boiling surface. The boiling test chips, 
aforementioned in Section 2.1, were fixed on the boiling surface module 
and thermal contacted by soldering materials to the top of the copper 
block heating module. The boiling surface module was made of poly-
ether ether ketone (PEEK) to minimize lateral heat loss due to its low 
thermal conductivity (~0.25 W/mK). Through repeated experiments, 
repeatability was confirmed to increase the reliability of the experi-
mental results. Details of the data reduction process and the repeated 
experimental results on all cases are demonstrated in Appendix B of SI. 

The uncertainties of parameters were evaluated using Moffat’s 
approach [65]. The error of temperature by K-type thermocouple was 
1.1 K. The lateral conduction heat loss of silicon chips was evaluated by 
commercial software (ANSYS, 6.3.26) [38,61]. Detailed analysis process 
of uncertainties and results are described in Appendix B of SI. As a result, 

Fig. 4. Pool boiling experimental results; (a) boiling curves on 6 different surfaces which have homogeneous wettability or SBPI surfaces, (b) CHF values, (c) HTC 
during middle heat flux regions (20–80 W/cm2), and (d) HTC values at 20 W/cm2. ONB results of silicon plain and wettability-controlled surfaces were indicated in 
the inset table. Notably, nucleation occurred at less than 1 K on the surfaces with superhydrophobicity because it forms a pre-vapor film with immersed conditions. 
Early ONB with controlled nucleation sites on SBPI surfaces could enhance HTC effectively. As a result, HTC were improved on the SBPI surfaces compared to 
homogeneous wettability surface. However, CHF was only improved on the SBPI_d0.1 surface compared to H-SHPI surface by 12.2%. 
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the maximum uncertainties of heat flux, wall superheat, and heat 
transfer coefficient were ± 6.6%, 7.0%, and 9.6%, respectively. The 
uncertainty of bubble departure diameter size caused by pixel was 
described in previous work [32], and the values were ± 0.1 mm. 

3. Results and discussion 

The boiling heat transfer experimental results are demonstrated in 
this section, and the CHF and HTC enhancement mechanism analyses 
are explored. Also, boiling results are compared with previous works 
using biphilic or superbiphilic patterned surfaces. Firstly, the boiling 
curves containing CHF and HTC values on each surface are provided. 
Then, the mechanism would be discussed with single/arranged bubble 
dynamics and wicking properties. Finally, new approaches using both 
micro and macro scale liquid supply are suggested to explain the results 
of present works and the potential for further improvements in future 
work. 

3.1. Simultaneous enhancement of HTC and CHF on SBPI surface 

The results of the pool boiling experiment are demonstrated in Fig. 4. 
Fig. 4(a) shows the input heat flux versus wall superheat and Fig. 4(b) 
shows the ratio of CHF compared to Si plain case. Fig. 4(c) shows the 
HTC during middle heat flux regions. In particular, Fig. 4(d) shows the 
ratio of HTC compared with Si plain case at 20 W/cm2. As shown in the 
inset table of Fig. 4(a), ONB of H-SHPO and all SBPI cases occur at 
extremely lower wall temperatures (under 1 K) than ONB of Si plain 
(22.3 K) and H-SHPI (15.4 K). These results indicate that bubble 
nucleation could be activated through the superhydrophobicity and only 
occur at SHPO islands. The CHF on the plain Si surface representing the 
base case was 83.2 W/cm2. On the H-SHPI, the CHF increased by 78.6% 
(148.6 W/cm2), while on the H-SHPO surface, it decreased by 70.7% 
(24.4 W/cm2). Among the homogeneous wettability surfaces (shown in 
gray), the H-SHPI surface revealed an enhancement in heat flux dissi-
pation with relatively low wall superheat compared to the H-SHPO 
surface. Our previous research and other published works have 
demonstrated that CHF can be enhanced by supplying additional 
working fluid to local dry regions via structured surfaces accompanied 
by wicking phenomena [17,18,66]. Wicking occurs when the apparent 
contact angle is less than the critical contact angle (θc), which is derived 
based on the variation of surface energy as follows [18,61]: 

θc = cos− 1
(

1 − φ
r − φ

)

(4)  

where r denotes the surface roughness factor and φ denotes the solid 
fraction. Each parameter was calculated assuming a rectangular 
arrangement and was defined as r ––– 1+ πdh/p2 and φ ––– πd2/4p2. The 
critical contact angle of 5-μm high SiNWs was approximately 89◦, which 
was sufficient to meet wicking criteria. Consequently, the additional 
liquid supply by wicking on the H-SHPI surface enhanced micro scale 
evaporation and quenching at local dry spots, increasing CHF. In addi-
tion, compared to Si plain, the surface morphology of SiNWs favors the 
bubble nucleation, allowing bubbles to depart with small size (acceler-
ating the departure frequency) and thereby improving the HTC [67,68]. 
In contrast, the CHF and HTC diminished significantly on the H-SHPO 
surface. These results can be explained by the behavior of vapor growth, 
as shown in Figure C.1 in Appendix C of SI. The bubble grew in the 
lateral direction while maintaining the contact angle. Even at low heat 
flux, a vapor film was formed over the entire H-SHPO surface with a 
large contact angle between the solid and liquid interface. Vapors grew 
by interfacial evaporation on a boiling surface, and the vapor film rose 
vertically due to buoyancy. Moreover, the bubble was desorbed from the 
middle of the vapor column by the necking effect, and the surface was 
continuously covered with a residual vapor film during boiling. The 
residual film blocked rewetting for quenching and evaporation on the 

heated surface. Therefore, the boiling performance, represented by the 
CHF and HTC, extremely deteriorated on the H-SHPO due to being 
cooled by only natural convection with the low thermal conductivity of 
the vapor film. 

The experimental results of the SBPI surfaces were obtained on the 
three different diameters of the patterns (plotted in color). The HTC of 
all SBPI cases were improved at the same heat flux compared with the 
homogeneous wettability surfaces (i.e. boiling curves are shifted to left). 
These results indicate that a relatively high heat flux can be dissipated 
even at a low surface wall superheat using SBPI surface. The nucleate 
site density increased from the low heat flux region by artificially 
manipulating and promoting the bubble nuclei points. The nucleation 
promotion effects on SHPO regions were experimentally verified by ONB 
evaluations as mentioned above. As a result, HTC was improved in the 
entire boiling region, which is consistent with the results of the study on 
boiling heat transfer using biphilic or SBPI surfaces [39,52]. CHFs were 
increased compared to the Si plain surface by 100.4% (166.8 W/cm2), 
59.9% (133.0 W/cm2), and 39.2% (115.8 W/cm2) on the SBPI_d0.1, 
SBPI_d0.5, and SBPI_d1.0 surfaces, respectively. These results demon-
strate that the SHPO area fraction on SBPI is one of the key factors in 
boosting CHF by liquid supply to a local dry area. 

Fig. 5 demonstrates the CHF enhancement ratio using superbiphilic 
patterned surfaces in previously reported studies and present work. 
Although all surfaces showed superhydrophilic properties, the value of 
‘CHF(H-SHPI)/CHF(Plain)’ improved according to the presence of 
wicking and performance improvement. However, SBPI surface with 
wicking [52,53] had less than 1 of ‘CHF(SBPI)/CHF(H-SHPI)’ due to the 
reduction of SHPI and wicking area. On the other hand, in the present 
work, the SBPI surface had a larger CHF than H-SHPI. Therefore, both 
high wickability and additional CHF enhancement by superbiphilic 
patterns could enhance effectively. Then, ‘CHF(SBPI)/CHF(Plain)’ had 
the highest values on the present work among utilizing superbiphilic 
surfaces. 

Particularly, an additional increase in the CHF was observed on the 
SBPI_d0.1 surface compared to the H-SHPI surface. Using that particular 
SBPI surface, both HTC and CHF were improved simultaneously. It 
means that the wicking property is not the only factor determining CHF 
during boiling heat transfer. In this regard, bubble departure site 

Fig. 5. CHF enhancement ratio using superbiphilic surface reported in previous 
research and present work. Betz et al. [52] and Rahman et al. [53] demon-
strated CHF reduction on SBPI surface compared with H-SHPI due to suppres-
sion of wicking phenomena. In this study, we overcome the limitation of CHF 
enhancement approach using both wickability and biphilic patterns. Therefore, 
CHF ratio of SBPI surface to plain surface has the highest value among the 
research using superbiphilic surfaces. 
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arrangement is conjectured as another underlying mechanism in the 
CHF enhancement. To demonstrate this speculation, the bubble depar-
ture characteristics were investigated. 

3.2. Bubble departure and liquid supply characteristics on SBPI surfaces 

The bubble departure characteristics were analyzed to comprehend 
the boiling performance enhancement mechanism on SBPI surfaces. 
Fig. 6(a) demonstrates the growth and departure of a single bubble on 
SBPI surfaces. The bubble was nucleated on the SHPO dot and grew 
along the SHPO dot-SHPI area contact line. The bubble grew in the 

lateral direction, maintaining the contact angle on SHPO region. How-
ever, this lateral expansion of bubbles was blocked, and the contact 
angle was changed into the hydrophilic region by a strong pinning ef-
fect. Eventually, the bubble grew spherically and detached from SHPO 
dots. Therefore, there is a close relationship between the bubble de-
parture diameter and the SHPO dot size. Fig. 6(b) demonstrates the 
average bubble departure diameter on the SBPI surfaces and H-SHPI 
surfaces. On the SBPI_d0.1 surface, the pinning effect produced a sharp 
bubble departure angle, which is favorable for liquid supply. Further-
more, the interfacial tension on the boundary contact line was relatively 
low on the smaller SHPO dot size due to the reduced perimeter. 

Fig. 6. (a) Bubble growth and departure characteristics on the SBPI surfaces. The scale bar indicates 1 mm. (b) Average bubble departure diameter versus SHPO dot 
sizes. As SHPO dot size increases, the bubble departure diameters were enlarged. 

Fig. 7. Bubble departure images with the interaction between adjacent bubbles on (a) SBPI_d0.1, (b) SBPI_d0.5, and (c) SBPI_d1.0, respectively. The red arrows 
indicate bubble coalescence during bubble growth. Significantly, bubbles were detached independently on the SBPI_d0.1 surface which has a larger pitch between 
SHPO dots than single bubble size. 
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Consequently, a bubble could easily separate from the surface during 
bubble growth. Therefore, the average diameter of departed bubbles on 
the SBPI_d0.1 surface was approximately 1.55 mm. On the SBPI_d1.0 
surfaces, however, the bubbles grew vertically and were separated by 
the necking effect. These bubble departure characteristics impede 
working fluid supply because of liquid blockage around the vapor col-
umn. The bubble grew to ensure enough buoyancy force to be detached 
from the surface resisting interfacial tension; hence, the relatively large 
departure diameters of 2.27 mm and 2.84 mm were obtained on 
SBPI_d0.5 and SBPI_d1.0, respectively. 

To further quantify the bubble interaction between adjacent hydro-
phobic dots, bubble departure behaviors on the overall SBPI areas were 
analyzed when the heat flux was 50 W/cm2, as shown in Fig. 7. In 
common on the three SBPI surfaces, early bubble formation was 
observed on all SHPO dots of the test substrates. Effective micro con-
vection and evaporation via bubble departure were accomplished by 
artificially increasing the nucleate site density from an extremely low 
heat flux; consequently, HTC can be improved on the SBPI surfaces. The 
different behaviors of bubble coalescence appeared on each SBPI surface 
due to a ratio between the single bubble departure diameter and the 
pitch of SHPO dot patterns. During bubble growth on the SBPI_d0.5 and 
SBPI_d1.0 surfaces, lateral coalescence occurred because the bubble size 

was greater than the pitch of nucleate sites. This coalescence reduces the 
liquid supply to the heated surfaces by obstructing the liquid supply 
pathway. Additionally, lateral bubble coalescence raises the probability 
of developing into vapor film formation. On the SBPI_d0.1 surface, 
however, the bubbles departed independently. In this study, the pitch of 
SHPO dots was maintained at 1.75 mm, which was sufficient to prevent 
bubble merging due to the smaller bubble departure diameter on the 
SBPI_d0.1 surface. Therefore, the macro scale liquid was supplied to the 
boiling surface without disturbance by the merged bubbles. 

Fig. 8 shows the bubble departure and liquid supply characteristics 
on homogeneous wettability and SBPI surfaces based on experimental 
results. The H-SHPO surface forms a vapor film and blocks both macro 
and micro scale liquid supply. On the other hand, micro scale liquid 
supply via wicking occurs on the H-SHPI surface; however, as heat flux 
increases, the random formation of nucleate sites raises the probability 
of local vapor film formation. Fig. 8(c) and 8(d) demonstrate the liquid 
supply mechanism on the SBPI surfaces. As the SHPO dot size decreases, 
the effective wicking area increases, enhancing the micro scale liquid 
supply capabilities. On the SBPI surface which has a smaller bubble 
departure diameter than the pitch between adjacent bubbles, macro 
scale liquid supply can be ensured by separating the liquid and bubble 
pathway. In Section 3.3, the relationship between liquid supply abilities 

Fig. 8. The schematic of macro scale and micro scale liquid supply to heated surface on (a) H-SHPO, (b) H-SHPI, (c) SBPI surface (Db < p), and (d) SBPI surface (Db >

p). During boiling heat transfer, the SBPI surface (Db < p) has an advantage for improving both macro and micro scale liquid supply. 
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and CHF on SBPI surfaces are discussed. 

3.3. Enhanced CHF by ensuring quick liquid supply via wicking and 
separating liquid/bubble pathway 

Wicking is one of major phenomena on the nanostructured surfaces 
that explains the CHF enhancement by supplying liquid to local dry 
regions. Local dry spots were quenched by the dynamic liquid propa-
gation on the wicking area. Therefore, the CHF improved due to the 
delay in vapor film formation caused by the decrease in SHPO area 
fraction, i.e., the increase in the wicking area. In prior research, to 
compare the micro-evaporated liquid supply abilities, the volumetric 
wicking rate was evaluated on nanostructured surfaces [61]. Here, we 
suggest the effective volumetric wicking rate (Weff,V) which considers 
not only wicking abilities but also the effective wicking area fraction 
(Awick/Atotal) of the SBPI surface. The wicking area (Awick) and effective 
volumetric wicking rate are defined as follows: 

Awick ≡ total area − SHPO dot area = p2 − πd2/4 (5)  

Weff ,V = (Awick /Atotal)W2(1 − φ)h (6)  

where, W is the wicking rate. Fig. 9(a) demonstrates the CHF in relation 
to the effective volumetric wicking rate. SBPI_d0.5 and SBPI_d1.0 have 
lower effective volumetric wicking rate than the H-SHPI surface; thus, 
the CHF decreases via reduced micro scale liquid supply. However, CHF 
values have large difference on the Si plain and H-SHPO which have no 
wicking. Furthermore, the SBPI_d0.1 surface exhibited a greater CHF 
enhancement than the H-SHPI surface, which has a homogeneous 
superhydrophilicity and larger wicking area. These results imply that 
the wicking ability does not fully explain the CHF enhancement on the 
SBPI surfaces. Wicking is a micro scale liquid supply mechanism based 
on capillary pressure. In contrast, macro scale liquid supply to the 
heated area is another mechanism to prevent vapor film formation. 
Consequently, effective separation of the counterflow between down-
ward liquid supply and upward bubble departure direction is another 
key factor in enhancing CHF. 

During nucleation boiling, artificially dividing liquid supply and 
bubble departure path by surface modification secures a larger macro 
scale liquid supply to the boiling surface [69–71]. Previous research has 
shown that CHF has the highest value when the bubble departure 
diameter to bubble pitch ratio remains constant at 1 [32,49]. Therefore, 
we propose the dimensionless liquid supply factor (Fl) that incorporates 

both macro and micro scale liquid supply through bubble behaviors and 
wicking. 

Fl = EXP

⎡

⎣
q′′

add, wick

q′′
CHF, plain

− K

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

p
Db

− 1
)2

√ ⎤

⎦ (7)  

where, q′′
add, wick is the additional heat dissipation caused by the evapo-

ration of wicked liquid, q′′
CHF, plain is the CHF on the silicon plain surface, 

p is the pitch between nucleate sites, and Db is the bubble departure 
diameter. K denotes the compensation value for fitting the linear rela-
tionship with CHF based on experimental results; it equals 0.1. q′′

add, wick 

is calculated as follow [18]: 

q′′
add, wick = ρlhlvWeff ,V

/
λ2

c (8)  

where ρl is the density of liquid, hlv is the latent heat of liquid-vapor 
phase, and λc is the critical wavelength. Fig. 9(b) shows the CHF 
enhancement of wettability control surfaces as the dimensionless liquid 
supply factor increases. Notably, only 0.26% of the effective volumetric 
wicking rate was reduced on the SBPI_d0.1 surface (i.e. 99.74% of 
wicking abilities were maintained) compared with H-SHPI surface; 
however, they have a larger advantage on macro scale liquid supply 
owing to separating the liquid and bubble pathway effectively. Hence, 
the CHF was improved by 100.4% and 12.2% compared to Si plain and 
with the SHPI surface, respectively. The experimental findings demon-
strate that wicking and bubble behavior must be considered when 
analyzing liquid supply capabilities during pool boiling. 

4. Conclusions 

This study successfully demonstrated simultaneous enhancement of 
the HTC and CHF using the patterned SBPI surfaces with wicking. SBPI 
surfaces were strategically fabricated to achieve the hybrid effects of 
superhydrophobicity and superhydrophilicity. Local SHPO dots facili-
tated bubble nucleation and stabilized nucleate sites to boost HTC. The 
SHPI region, consisting of SiNWs, possessed both superhydrophilicity 
and dynamic wicking phenomena to further improve CHF via rapid 
liquid supply to the local dry region. 

To evaluate HTC and CHF, pool boiling experiments were conducted 
on homogeneous wettability surfaces and SBPI surfaces. All SBPI sur-
faces increased the HTC regardless of SHPO area fractions due to 

Fig. 9. (a) CHF vs effective volumetric wicking rate: the wicking phenomenon is insufficient to fully explain the CHF on wettability-controlled surfaces. H-SHPO 
surface has a smaller CHF compared to Si plain, and SBPI_d0.1 has a larger CHF compared to H-SHPI surface although it has a lower effective volumetric wicking rate. 
(b) CHF vs dimensionless liquid supply factor: considering both macro and micro scale liquid supply on wettability-controlled surfaces, it clearly demonstrates that 
the CHF can be enhanced by improving bubble behaviors and wicking properties. 
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promoting nucleation and maximizing nucleate site density during pool 
boiling. The CHF was additionally enhanced on the SBPI_d0.1 surface 
compared to the H-SHPI surface, while other cases decreased the CHF. 
This result overcomes the pending issue of CHF reductions on the SBPI 
surface with wicking due to the suppression of dynamic liquid supply to 
SHPO regions. 

Two significant CHF enhancement mechanisms and strategies were 
provided by evaluating the effective volumetric wicking rate and 
analyzing bubble departure characteristics. First, reducing SHPO area 
fractions maintained superhydrophilicity and wicking area for imme-
diate micro scale liquid supply to dry spots. Second, macro scale liquid 
supply was secured by effectively separating liquid and bubble pathways 
to prevent developing into film boiling. Considering these two mecha-
nisms, a dimensionless liquid supply factor was proposed and success-
fully utilized to verify the relationship to the CHF. 

In conclusion, the pool boiling performance was enhanced by stra-
tegically controlling SBPI surfaces that have complex variables affecting 
boiling heat transfer. Employing multiscale techniques to enhance the 
liquid supply and bubble behaviors can further enhance boiling per-
formance. SBPI surfaces with enhanced boiling performance can be 
utilized to effectively dissipate heat and prevent thermal failure in high- 
power generating systems. 
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